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Black body radiation refers to the electromagnetic radiation emitted by an
idealized object that absorbs and emits all incident radiation perfectly, with its
spectral distribution dependent only on temperature. Think of the black body
object as being composed of a large number (on the order of Avogadro’s number)
of harmonic oscillators, and all radiation that is emitted from the black body is
due to vibrations of these harmonic oscillators (e.g. none of the light emitted
is reflected from another source). Classical physics, using the Rayleigh-Jeans
law, predicted an infinite energy output at short wavelengths in the ultraviolet
range, a physical impossibility known as the ultraviolet catastrophe (Fig. 1).

This stark disconnect between experimental data and what was the best
theory describing radiation at the time was eventually resolved by Max Planck in
1900 by introducing the idea that electromagnetic energy is quantized, meaning
it can only be emitted or absorbed in discrete packets of energy hν, leading
to Planck’s law of black body radiation. This groundbreaking assumption laid
the foundation for quantum mechanics, inspiring later developments such as
Einstein’s photoelectric effect and Bohr’s atomic model. Here, we will derive
Planck’s equation for the spectrum produced by black body radiation, beginning
with his Nobel Prize winning discovery: the quantization of energy.

Figure 1: Plot of black body ra-
diation spectra as spectral ra-
diance for different tempera-
tures predicted by Planck’s so-
lution, which agrees with ex-
periment (colored lines), com-
pared to spectral radiance as a
function of wavelength as pre-
dicted by the Rayleigh-Jeans
law (black line) [2].
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Figure 2: Cartoon representation of a black body radiation experiment.

If we assume that energy is quantized, meaning it cannot take on a con-
tinuous range of values but must instead change in discrete steps, then it is
reasonable to propose that there exists a fundamental minimum unit of en-
ergy. This implies that any allowed energy value must be an integer multiple of
this fundamental unit, leading to the expression nhν, where hν represents the
smallest indivisible quantum of energy, and n is a non-negative integer. While
the frequency ν itself can vary continuously from one physical system to the
next, for a given system, the energy exchange at a given frequency still occurs
in discrete packets of size hν, ensuring that the quantization principle remains
intact.

To put it simply all matter jiggles, and the hotter something is the more
its jiggling. Further, let’s consider our black body object to be made up of a
collection of harmonic oscillators. If you’ve seen a weight bouncing on a spring,
you know what a harmonic oscillator is! Now because energy is quantized, there
is a minimum amount that a jiggling piece of matter can increment upwards
in energy, and we can calculate this by multiplying Planck’s constant, h =
6.62607015 × 10−34 J/Hz (where Hz = s−1). Thus, any energy our jiggling
system can have will be some integer multiple of hν, and we can write the
following expression for an allowed energetic state for a quantum harmonic
oscillator:

En = nhν

where n is any non-negative integer. Further, the total energy of a black body
object composed of my harmonic oscillators can be calculated by summing over
all oscillators at their respective quantum energy state indicated by their quan-
tum number n.
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ETotal =
∑
n∈N

nhν

where N is the set of all quantum states for all harmonic oscillators. It is not
typically possible to know all quantum states for all harmonic oscillators in
a system, but fear not, later we will invoke Boltzmann statistics to calculate
the average energy of oscillators, which can be multiplied by the number of
oscillators to calcuate Etotal

Recall that the value measured in the black body radiation experiments is
power density as a function of temperature. Power is energy per time and
power density is power per volume. Thus, we need to find a way to build up
our energy expression En = nhν into an expression of power per volume. Let us
first figure out what the average energy of our quantum harmonic oscillator is at
a particular temperature. Fortunately for Max Planck, Ludwig Boltzmann had
already introduced the Boltzmann distribution, which can be used to calculate
average energy ⟨E⟩. First, we write the Boltzmann probability for observing a
particular energy E:

P (E) =
e−E/kT∑∞

n=0 e
−En/kT

where the sum in the denominator is a normalizing constant we call the partition
function.

Since we have expressions for the probabilities and the values of all possible
energies, we can use this to calculate a mean. It’s the same process by which
you could calculate the average age, ⟨age⟩, of a group of 10 students if you knew
that 3 students are 20, 6 students are 21, and 1 student is 22:

⟨age⟩ = 3

10
· 20 + 6

10
· 21 + 1

10
· 22 = 20.8

or equivalently, we could think of those fractions as probabilities of randomly
selecting a student of each age (P (age)):

⟨age⟩ = P (20) · 20 + P (21) · 21 + P (22) · 22 = 20.8

Just as we sum over all the ages multiplied by the probability of a student
being that age, we can do the same with the energies by summing over each
energy multiplied by the probability of the oscillator having that energy.

⟨E⟩ =
∑∞

n=0 En e
−En/kT∑∞

n=0 e
−En/kT

Note that the partition function in the denominator is the same for each indi-
vidual probability, so it factors out, allowing us to divide the entire sum in the
numerator by the partition function once. Further, since we have our quantized
expression for energy, En = nhν, we can write:
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⟨E⟩ =
∑∞

n=0 nhν e
−nhν/kT∑∞

n=0 e
−nhν/kT

Next, we recognize that the infinite sum in the denominator is a geometric series:

∞∑
n=0

e−nhν/kT = 1 + e−hν/kT + e−2hν/kT + . . .

The geometric series is easier to see if we define x like this:

x = e−hν/kT

Now, rewriting the series:

∞∑
n=0

e−nhν/kT =

∞∑
n=0

xn

Since this is the infinite geometric series that sums to:

∞∑
n=0

xn =
1

1− x
, for |x| < 1

Thus, we substitute back in for x, and the sum in the denominator becomes:

∞∑
n=0

e−nhν/kT =
1

1− e−hν/kT

for |e−hν/kT | < 1, which is fine because negative exponentials are always less
than 1, and all the parameters in our negative exponential are non-negative. So
we now have a finite value for our partition function, rather than an infinite
series!

Next, we look at the sum in the numerator, and see that it is related to that
same geometric series by its derivative:

∞∑
n=0

nhν e−nhν/kT

We define x the same way as before:

x = e−hν/kT

So the sum now simplifies to:

hν

∞∑
n=0

nxn
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Note that the constant hν has been factored out of the sum. Returning to the
geometric series, we can turn it into our new series by applying the differential
operator d

dx to it:

∞∑
n=0

xn =
1

1− x
, for |x| < 1.

Differentiating both sides with respect to x:

d

dx

∞∑
n=0

xn =
d

dx

(
1

1− x

)
∞∑

n=0

nxn−1 =
1

(1− x)2

Multiplying by x on both sides:

∞∑
n=0

nxn =
x

(1− x)2

Now we substitute x = e−hν/kT back into the expression:

∞∑
n=0

ne−nhν/kT =
e−hν/kT

(1− e−hν/kT )2

Multiplying by hν, we get:

∞∑
n=0

nhν e−nhν/kT = hν
e−hν/kT

(1− e−hν/kT )2

Now that we have replaced both infinite sums with finite expressions, we can
combine our numerator and denominator to replace both sums over n with
functions of only ν and T :

⟨E⟩ = hν
e−hν/kT

(1− e−hν/kT )2
· 1− e−hν/kT

1

Simplifying this:

⟨E⟩ = hν
e−hν/kT

1− e−hν/kT

Then by dividing numerator and denominator by e−hν/kT , we can write:

⟨E⟩ = hν

ehν/kT − 1

Next, recall that we need an expression of energy density for a hot object
made up of harmonic oscillators, not just the energy of a single oscillator (later
we’ll go from energy density to power density). In a hot, vibrating material,
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energy is distributed across many possible vibrational modes. Since matter
itself is discretized, or quantized, because matter is made up of atoms, there is a
finite number of vibrational states possible in any object. The density of states
tells us how many allowed vibrational states exist per unit volume at a given
frequency ν. Although we won’t do a full derivation for the density of states

expression, 8πν2

c3 , as it requires a deeper discussion of solid state physics, I’ll
create additional material deriving that later. For now, it will suffice to know
that each of these states carries an average energy ⟨E⟩, and the total energy
density u(ν, T ) is obtained by multiplying the density of states (vibrational
modes per unit volume) by the average energy per state.

u(ν, T ) =
8πν2

c3
⟨E⟩

Note that the units for the density of states is m−3/Hz, or m−3s, so multiplying
by energy gives us units of energy per volume per unit frequency. Thus, we
multiply the density of states by the average energy:

u(ν, T ) =
8πν2

c3
hν

ehν/kT − 1

Producing our energy density expression as a function of frequency and tem-
perature:

u(ν, T ) =
8πhν3

c3
1

ehν/kT − 1

It’s not quite a power density yet, but were getting closer! Our expression
for energy per volume per unit frequency (u(ν, T )) tells us about energy being
emitted from the black body, but it does not tell us about the energy being
detected by our detector. For this, we need to calculate the spectral energy
flux Iν (also called specific intensity), which is in units of power per area per
frequency per steradian (symbol: sr, or square radian, the unit of solid angle
- Fig. 4). A flux is a flow, so spectral energy flux Iν is the amount of energy
at frequency ν flowing through the surface of our detector (hence why it is per
unit area). The first thing to consider is that the energy propagates as light, so
we know how fast the energy will flow through the area of the detector:

Energy flux = Energy density × Speed

If the radiation was all going the same direction, we could measure the total
spectral energy flux through our detector by just multiplying energy density by
the speed of light:

Iν = c u(ν, T )

In reality, consider that on the surface of this black body, radiation is just as
likely to shine outwards as into the cavity, which means that only half of the
light will radiate outwards. Further, only the light on the side of a spherical
black body facing the detector has the possibility of sending light towards the
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Detector Only ¼ of the surface of the black body can emit light 
with a vector component pointed at the detector.

𝑛ℎ𝜈 cos 𝜃

𝑛ℎ𝜈 sin 𝜃

𝜃

Figure 3: Half of the photons are pointed inwards, and only half of the photons
pointed outwards have an x component pointed towards the detector.

detector. These two effects result in an attenuation of the measured energy flux
by 1/2× 1/2 = 1/4 (Fig. 3). Thus, we write:

Iν =
c

4
u(ν, T )

Next, if we consider that, of the light that does hit the detector, only the
component of that field vector that is pointed in the direction of the detector
is measured (think of a glancing blow vs. a direct hit), we account for this
attenuation by integrating spectral radiance Bν(T ) times cos(θ), the vector
component of the incident radiation that is directly hitting the detector over all
possible angles (Fig. 3), giving us spectral radiance Bν(T ) is as the power per
unit area per unit solid angle per unit frequency, so we relate it to Iν :

Iν =

∫
hemisphere

Bν(T ) cos θ dΩ.

Note the integration element dΩ = sin θ dθ dϕ is the solid angle element, which
you can visualize by thinking about how many vector arrows are packed into a
given wedge-shaped segment, as shown in Fig. 4. Hence, we substitute dΩ into
our previous equation:

Iν = Bν(T )

∫ 2π

0

dϕ

∫ π/2

0

cos θ sin θ dθ.

The limits of integration can be justified by looking at Fig. 5, where we note
that for an emitter on the surface of a black body object pointed towards the
detector, we must also account for the fact that the radiation can emit at any
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Figure 4: Graphical representa-
tion of the wedge-like solid angle
element of integration[1].
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Figure 5: Justification for integration limits over θ and ϕ for a radiation emitter
on the surface of a black body object pointed towards the detector.

angle relative to that surface, and only the vector component of the photon
emitted aligned with the detector will be measured (Fig. 3).
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The previous expression for Iν then integrates to:

Iν = πBν(T )

Now that we have two definitions for Iν , we can set the two equal to each other:

πBν(T ) =
c

4
u(ν, T )

Finally, we have an equation for power density, the quantity measured by the
experimentalists studying black body radiation!:

Bν(T ) =
c

4π
u(ν, T )

Next, let us expand this expression to include our previously derived expression
for energy density u(ν, T ):

Bν(T ) =
c

4π

8πhν3

c3
1

ehν/kT − 1

which simplifies to:

Bν(T ) =
2hν3

c2
1

ehν/kT − 1

This is a perfectly fine expression for power density in the frequency domain,
but the experimental data was collected in terms of wavelength, not frequency,
so we only need to map this expression to a wavelength description, and we’re
done! In order to express Bν(T ) in terms of wavelength λ instead of frequency
ν. We use the well known relationship:

ν =
c

λ

Differentiating both sides:

dν = − c

λ2
dλ

Ignoring the negative sign (negative frequencies and negative lengths don’t have
any physical meaning anyway), we can write:

dν =
c

λ2
dλ

Since spectral radiance must remain the same when changing variables:

Bλ dλ = Bν dν

Dividing both sides by dλ:

Bλ = Bν
dν

dλ

Substituting dν
dλ = c

λ2 from a couple steps ago:
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Bλ = Bν
c

λ2

Substituting power density in the frequency domain Bν(T ) =
2hν3

c2
1

ehν/kT−1
, and

replacing ν = c/λ:

Bλ =

(
2h(c/λ)3

c2
1

eh(c/λ)/kT − 1

)
c

λ2

Bλ =

(
2hc3

c2λ3

1

ehc/λkT − 1

)
c

λ2

Bλ =
2hc2

λ5

1

ehc/λkT − 1

Finally, we have Planck’s law in wavelength form:

Bλ(λ, T ) =
2hc2

λ5

1

ehc/λkT − 1
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