About Me

I am a member of the faculty at San José State University, where I am an Assistant Professor of Computational Chemistry. My research has been published in a variety of journals across disciplines, including the Journal of Chemical Information and Modeling, Nature Structural and Molecular Biology, the Journal of Chemical Physics, the Journal of Physical Chemistry, Biomolecules, and the SIAM Journal on Applied Mathematics. Previously, I worked as a postdoctoral researcher in a joint appointment with Prof. Carter T. Butts (California Institute for Telecommunications and Information Technology - Calit2) and Prof. Rachel W. Martin (Dept. of Chemistry) at the University of California, Irvine (UCI). I completed my Ph.D. in Chemistry at UCI, advised by Prof. Ioan Andricioaei, and my M.S., B.S., and B.A. were all completed at Villanova University. In addition to my research experience, I also have 3 years of management experience at the Merck Pharmaceutical Testing Lab, and have taught a wide variety of subjects ranging from physical chemistry, to programming in Python, to graduate computational chemistry, to science communication, and have even taught guitar professionally. I am also active in science education outreach for communicating the broader impacts of science to people outside of the scientific community and future scientists alike.

About the Grazioli Research Group

In a nutshell, we develop computational methods that use molecular simulations and machine learning to study configurational dynamics in biomolecules, molecular self-assembly, and chemical reaction dynamics. Our research interests are highly interdisciplinary, drawing from computational/theoretical chemistry and biophysics, physical chemistry, chemical physics, data science and structural biology. I aim to build on my research experience in enhanced sampling methodologies for molecular simulations, machine learning, and coarse-grained modeling toward building computational discovery methods for the molecular sciences. Highly motivated students of all levels and backgrounds, who are interested in learning to use computers to study chemistry and biophysics, are encouraged to reach out to me via my SJSU email. The work that we do is fundamentally interdisciplinary, so my group is a great fit for students from a wide variety of majors (e.g. chemistry, physics, computer science, engineering, bioinformatics, biology, etc.). No programming is experience required, only a willingness to learn, a willingness to work with others, and tenacity! For more information, please watch the video below, as well as the FAQ (frequently asked questions) video on my contact page:


Curriculum Vitae

For more details on my professional experience, please click on the link to my C.V.

Molecular Dynamics Methodology

Much of my work in this area has been devoted toward advancing theory and creating algorithms for calculating kinetic properties from molecular simulations. I have developed multiple enhanced sampling methodologies for molecular dynamics simulations of complex systems, such as proteins and nucleic acids.

Learn More

Machine Learning Applications

Another main focus of my research is the development of machine learning-based methods for both setting up and interpreting the results of molecular simulations. I am also interested in developing machine learning-based methodology for interpreting experimental data.

Learn More

Coarse-grained Modeling

My third research focus is the development of coarse-grained modeling techniques for molecular systems whose complexity make atomistic models intractable on the time scales of interest. I have built theoretical models for phenomena such as force-modulated catalytic activity in enzymes and protein aggregation.

Learn More